Skip to content
Menu

Order Plan:  +7(985) 363 37 65 

Thermal conductivity and heat capacity of building materials

The page has been viewed 1807 times

A table of heat conductivity of building materials, their density, and specific heat capacity of materials in the dry state at atmospheric pressure and temperature of 20...50°С is given (if no other temperature is specified).

Physicists and lyricists. Which house is warmer
Physicists and lyricists. Which house is warmer

Note the thermal conductivity of building materials in the table. There is no linear relationship between thermal conductivity and density. In the table, some materials with lower density have higher thermal conductivity and vice versa. Not all materials with low thermal conductivity can be used in home insulation. Some building materials can make the health of home occupants worse, such as glass wool, which because of the short length of the fibers, penetrates cracks and eventually ends up in the lungs, which can lead to asthma or lung cancer. We have also excluded slag-based materials from the table as possible carcinogens.

Also, pay attention to the heat capacity of materials. There is an opinion that the walls and floor of the house should be made of heat-intensive materials to get a comfortable indoor climate. There is too much misunderstanding. If heat-absorbing materials absorb free heat, such as from the sun, it has a positive effect on home insulation. Still, if they drink kilojoules generated by your furnace, they cause higher heating bills and have little impact on a comfortable temperature.

Thermal conductivity and heat capacity of building materials
Material Density,
кг/м3
Thermal conductivity,
Watt/(м·град)
Heat capacity,
Дж/(кг·град)
       
Aluminum 2600 221 897
Fibrous asbestos 470 0.16 1050
Asbestos-cement sheet 1600 0.4 1500
Asbestos-rich asbestos sheeting 1800 0.17…0.35
Asbestos-coated asbestos with 10-50% asbestos 1800 0.64…0.52
Asbestos cement felt 144 0.078
Asphalt 1100…2110 0.7 1700…2100
Asphalt Concrete  2100 1.05 1680
Aerogel (Aspen aerogels) 110…200 0.014…0.021 700
Basalt 2600…3000 3.5 850
Bakelite 1250 0.23
Birch 510…770 0.15 1250
Concrete on gravel or crushed stone of natural stone 2400 1.51 840
Concrete on stone rubble 2200…2500 0.9…1.5
Concrete on sand 1800…2500 0.7 710
Dense silicate concrete 1800 0.81 880
Thermal insulation concrete 500 0.18
Petroleum bitumens for construction and roofing 1000…1400 0.17…0.27 1680
Aerated concrete block 400…800 0.15…0.3
Ceramic porous block 0.2
Paper 700…1150 0.14 1090…1500
Booth 1800…2000 0.73…0.98
Mineral light wool 50 0.045 920
Heavy mineral wool 100…150 0.055 920
Vermiculite (in the form of bulk granules) 100…200 0.064…0.076 840
Expanded vermiculite - backfill 100…200 0.064…0.074 840
Vermiculite Concrete 300…800 0.08…0.21 840
Air dry at 20°C 1.205 0.0259 1005
Gas and foam concrete, gas and cellular concrete 280…1000 0.07…0.21 840
Dry molded gypsum 1100…1800 0.43 1050
Drywall 500…900 0.12…0.2 950
Gypsoperlite mortar 0.14
Normal clay 1600…2900 0.7…0.9 750
Refractory clay 1800 1.04 800
Gravel (filler) 1850 0.4…0.93 850
Keramsite gravel - backfill 200…800 0.1…0.18 840
Shungisite gravel - backfill 400…800 0.11…0.16 840
Granite (facing) 2600…3000 3.5 880
Earthy soil 10% water 1.75
Earthy soil 20% water 1700 2.1
Sandy soil 1.16 900
Ground dry 1500 0.4 850
Tamped down soil 1.05
Oak material along the fibers 700 0.23 2300
Oak across the fibers 700 0.1 2300
Duralumin 2700…2800 120…170 920
Iron 7870 70…80 450
Reinforced Concrete 2500 1.7 840
Limestone (facing) 1400…2000 0.5…0.93 850…920
Products of expanded perlite on bituminous binder  300…400 0.067…0.11 1680
Foam concrete products 400…500 0.19…0.22
Ceramic porous stone Brauer 14.3 NF and 10.7 NF 810…840 0.14…0.185
Hollow blocks of lightweight concrete 500…1200 0.29…0.6
Full-bodied stones of lightweight concrete DIN 18152 500…2000 0.32…0.99
Building stone 2200 1.4 920
Asbestos insulating cardboard 720…900 0.11…0.21
Corrugated cardboard 700 0.06…0.07 1150
Dense cardboard 600…900 0.1…0.23 1200
Cork cardboard 145 0.042
Cardboard construction multilayer 650 0.13 2390
Insulating cardboard 500 0.04…0.06
Foam rubber 82 0.033
Natural rubber 910 0.18 1400
Red cedar 500…570 0.095
Keramsite 800…1000 0.16…0.2 750
Clay peas 900…1500 0.17…0.32 750
Playdate lightweight 500…1200 0.18…0.46
Playdate concrete on playdate sand and expanded claydite concrete 500…1800 0.14…0.66 840
Playdate concrete on perlite sand 800…1000 0.22…0.28 840
Ceramics 1700…2300 1.5
Blast furnace brick (refractory) 1000…2000 0.5…0.8
Dense red brick 1700…2100 0.67 840…880
Red porous brick 1500 0.44
Clinker brick 1800…2000 0.8…1.6
Facing brick 1800 0.93 880
Hollow bricks 0.44
Silicate Brick with Technical Cavities 0.7
Silicate Slotted Brick 0.4
Building Bricks 800…1500 0.23…0.3 800
Masonry of medium-density stones 2000 1.35 880
Gas silicate masonry 630…820 0.26…0.34 880
Masonry of gas silicate heat insulation boards 540 0.24 880
Masonry of standard clay bricks on cement-perlite mortar 1600 0.47 880
Masonry of standard clay bricks on cement-sand mortar 1800 0.56 880
Masonry of ceramic hollow bricks on cement-sand mortar 1000…1400 0.35…0.47 880
Masonry of small bricks 1730 0.8 880
Masonry of hollow wall blocks 1220…1460 0.5…0.65 880
Masonry of silicate 11 hollow bricks on cement-sand mortar 1500 0.64 880
Masonry of silicate 14 hollow bricks on cement-sand mortar 1400 0.52 880
Masonry of sand-lime bricks on cement-sand mortar 1800 0.7 880
Masonry of cellular bricks 1300 0.5 880
Maple 620…750 0.19
Oil paint (enamel) 1030…2045 0.18…0.4 650…2000
Ice -20°C 920 2.44 1950
Ice 0°C 917 2.21 2150
Linoleum polyvinylchloride multilayer 1600…1800 0.33…0.38 1470
Polyvinylchloride linoleum on a fabric backing 1400…1800 0.23…0.35 1470
Lime, (15% moisture content) 320…650 0.15
Larch 670 0.13
Asbestos-cement flat sheets 1600…1800 0.23…0.35 840
Gypsum cladding sheets (dry plaster) 800 0.15 840
Cork lightweight sheets 220 0.035
Mats, basalt wool sheets 25…80 0.03…0.04
Mineral wool and synthetic binding mats 50…125 0.048…0.056 840
MBOR-5, MBOR-5F, MBOR-C-5, MBOR-C2-5, MBOR-B-5 100…150 0.038
Chalk 1800…2800 0.8…2.2 800…880
Copper 8500 407 420
Marble (facing) 2800 2.9 880
Deck flooring 630 0.21 1100
Sawdust wood 200…400 0.07…0.093
Hemp 150 0.05 2300
Gypsum wall panels DIN 1863 600…900 0.29…0.41
Oak parquet 1800 0.42 1100
Parquet piece 1150 0.23 880
Panelboard parquet 700 0.17 880
Foam Concrete 300…1250 0.12…0.35 840
Foam PS-1 100 0.037
Foam plastic PS-4 70 0.04
Foam PVC-1 65…125 0.031…0.052 1260
Reopen FRP-1 foam 65…110 0.041…0.043
Styrofoam 40 0.038 1340
Styrofoam 100…150 0.041…0.05 1340
Styrofoam People 22…47 0.03…0.036 1600
Polyurethane foam 40…80 0.029…0.041 1470
Polyurethane foam sheets 150 0.035…0.04
Polyethylene foam 0.035…0.05
Polyurethane foam panels 0.025
Lightweight foam glass 100..200 0.045…0.07
Foamed glass or gas-glass 200…400 0.07…0.11 840
FoamFoil 44…74 0.037…0.039
Parchment 0.071
Pergamon 600 0.17 1680
Reinforced ceramic slab with concrete filling without plaster 1100…1300 0.7 850
Reinforced concrete elements ceiling with plastering 1550 1.2 860
Monolithic flat reinforced concrete slab 2400 1.55 840
Perlite 200 0.05
Perlite bloated 100 0.06
Sand 0% moisture 1500 0.33 800
Sand 10% moisture 0.97
Sand 20% moisture 1.33
Sand for construction works 1600 0.35 840
Fine river sand 1500 0.3…0.35 700…840
Burnt Sandstone 1900…2700 1.5
Fir 450…550 0.1…0.26 2700
Pressed paper board 600 0.07
Corkboard 80…500 0.043…0.055 1850
Tile facing, tile 2000 1.05
Alabaster slabs 0.47 750
Gypsum slabs 1000…1200 0.23…0.35 840
Fiberboard and chipboard 200…1000 0.06…0.15 2300
Kersmith concrete slabs 400…600 0.23
Polystyrene concrete slabs 200…300 0.082
Glass staple fiber synthetic binder boards  50 0.056 840
Cellular concrete slabs  350…400 0.093…0.104
Flax-bark insulation boards 250 0.054 2300
Bitumen-bonded mineral wool slabs, grade 200 150…200 0.058
Synthetic-binder mineral wool slabs, grade 200 225 0.054
Mineral wool boards with increased rigidity 200 0.052 840
Organophosphate-bonded mineral wool boards with increased rigidity 200 0.064 840
Starchbonded semi-rigid mineral wool boards 125…200 0.056…0.07 840
Soft, semi-rigid, and rigid mineral wool boards on synthetic and bituminous binding  50…350 0.048…0.091 840
Unpressed expanded polystyrene boards 30…35 0.038
Styrofoam boards (extrusion) 32 0.029
Porous concrete building slabs 500…800 0.22…0.29
Fiberboard and fiberboard on Portland cement 300…800 0.07…0.16 2300
Carpeting 630 0.2 1100
Covering synthetic (PVC) 1500 0.23
Gypsum seamless floor 750 0.22 800
Polyvinyl chloride (PVC) 1400…1600 0.15…0.2
Polycarbonate (Teflon) 1200 0.16 1100
Polypropylene 900…910 0.16…0.22 1930
Polystyrene UPP1, PPS 1025 0.09…0.14 900
Polystyrene Concrete 150…600 0.052…0.145 1060
Polystyrene concrete modified on the composite low-clinker binder in-wall blocks and slabs 200…500 0.052…0.105 1060
Polystyrene concrete modified monolithic on Portland cement 250…300 0.075…0.085 1060
Polyurethane 1200 0.32
Polychlorvinyl 1290…1650 0.15 1130…1200
High-Density Polyethylene 955 0.35…0.48 1900…2300
Low-Density Polyethylene 920 0.25…0.34 1700
Technical granulated cork 45 0.038 1800
Bitumen-based mineral cork 270…350 0.073…0.096
Cork flooring 540 0.078
Coquina 1000…1800 0.27…0.63 835
Gypsoperlite mortar 600 0.14 840
Lime Mortar 1650 0.85 920
Lime-sand mortar 1400…1600 0.78 840
Lightweight mortar LM21, LM36 700…1000 0.21…0.36
Complex mortar (sand, lime, cement) 1700 0.52 840
Cement-sand mortar 1800…2000 0.6…1.2 840
Cement-perlite mortar 800…1000 0.16…0.21 840
The rubber is soft. 0.13…0.16 1380
Hard ordinary rubber 900…1200 0.16…0.23 1350…1400
Rubber is porous 160…580 0.05…0.17 2050
Ruberoid 600 0.17 1680
Slate 2600…3300 0.7…4.8
Mica puffed 100 0.07
Mica across layers 2600…3200 0.46…0.58 880
Mica, along with the layers 2700…3200 3.4 880
Freshly fallen snow 120…200 0.1…0.15 2090
Snow lying at 0°C 400…560 0.5 2100
Pine and spruce along the fibers 500 0.18 2300
Pine and spruce across the fiber 500 0.09 2300
Pine resin 15% moisture 600…750 0.15…0.23 2700
Reinforcing bar steel 7850 58 482
Window glass 2500 0.76 840
Glasswool 155…200 0.03 800
Fiberglass 1700…2000 0.04 840
Fiberglass 1800 0.23 800
Glass fiberboard 1600…1900 0.3…0.37
Pressed wood chips 800 0.12…0.15 1080
Tol 600 0.17 1680
Poplar 350…500 0.17
Peat Pellets 275…350 0.1…0.12 2100
Tuff (cladding) 1000…2000 0.21…0.76 750…880
Tuphobeton 1200…1800 0.29…0.64 840
Plywood 600 0.12…0.18 2300…2500
Fibreboard (GreenBoard) 450 0.063 2100
Cellophane 0.1
Cement boards 1.92
Concrete tiles 2100 1.1
Clay tile 1900 0.85
PVC asbestos tiles 2000 0.85
Plaster gypsum 800 0.3 840
Lime plaster 1600 0.7 950
Synthetic resin plaster 1100 0.7
Plastering with polystyrene mortar 300 0.1 1200
Perlite plaster 350…800 0.13…0.9 1130
Dry plaster 0.21
Insulating plaster 500 0.2
Facade plaster with polymer additives 1800 1 880
Cement plaster 0.9
Cement-sand plaster 1800 1.2
Crushed stone and perlite sand - backfill 200…600 0.064…0.11 840
Ebonite blew up 640 0.032
Ecowool 35…60 0.032…0.041 2300
Ansonia (pressed cardboard) 400…500 0.1…0.11

Comparison of the thermal conductivity and heat capacity of a single-layer masonry of aerated concrete and a frame wall


One sq.m. wall of a single-layer masonry gas silicate 400 mm thick has a heat capacity of 228800 J / ha, and one sq.m. frame wall thickness of 176 mm 61548 J / ha (fiberboard 14 mm, 150 mm frame with eco wool, gypsum board 12 mm). The heat capacity of the aerated concrete walls is four times higher than that of framed walls, BUT... Let's take a conditional house 10h10h2, 5 m; the surface area will be 300 sq m and the volume of 250 cubic meters. In winter, when the street is -20 ° C, and you need the house was +20 ° C. Let's assume that you have a boiler with a capacity of 20kWh or 72000kJ. Let's omit the fact that the boiler first heats the water carrier, it passes through the pipes, warms them, and they, in their turn, give the heat to the surrounding air. Using convection, the air will be heated in the whole house in 10 minutes, but it will heat the surfaces of walls, floor, and ceiling, and that is why the air temperature will not be 20°Ñ in 10 minutes. The air will give its heat to the plaster. In the whole house, Cement-sand plaster with a thickness of 10 mm weighs 4800 kg and can accumulate heat 51 kWh. Therefore, it takes 2.7 hours to heat the dressing to 20 degrees and all the air in the house. But during this time, the application will give 227 watts to the gas concrete, which needs much more heat to heat to 20 degrees.  The thermal resistance of the plaster of the whole boiler consumes 9152000 J x 0.000277778 W/h x 300 m² = 762.6 kWh to heat the building envelope of the gas concrete house + 3.36 kWh of air and lose 344.7kW. 775 kWh.

To heat 1 square meter of the frame wall, the boiler will expend 61548 J x 0.000277778Wh= 17.1Wh +3.36kWh and lose 3.6kWh 24kWh. In other words, a 20kWh boiler will require about 

This means that your heating boiler will work longer to heat the room to a comfortable temperature because it will heat the air and the walls, but while the walls will be heated, they will also cool, giving the heat to the street. Following the Fourier heat conduction law, the flow of heat transfer will be directed towards the hard road. Your mother must have told you more than once as a child: "Don't sit on a concrete floor, sit on a bench." Because concrete takes heat from the body, and a person can catch a cold. That's why all seats are made of wood or other poorly heat-transferring materials.

The heat loss through the wall can be calculated according to the formula:

 [W/(m-K) - (m2-K)/m = W/(m-K) - (m-K) = W].

Each square meter of gas silicate masonry at a temperature difference of 40° will leak 30Wh. At the same heat loss through the frame wall, the thickness of 150 mm will be 12W / hour. The south wall of the house of aerated concrete on a hot day is more heated by the sun than the frame wall and gives all the heat into the room, so in the summer, in a house made of aerated concrete hotter.

Heat capacity is essential in the heat carrier and the floor. If you need heat capacity in a frame house, make a "warm floor." 

Therefore, gentlemen, build a house on frame technology. There will be you, and high thermal resistance and sufficient heat capacity or, in simple terms, the place will be warm and comfortable.

OTHER ARTICLES

What to use when building a frame house: nails or self-tapping screws
Basics of Strength of Materials theory
Aerocrete block
Why you should insulate your home with sprayed cellulose